ALL    ABOUT    QUANTUM     DOTS                                                                                                                                                                                                                                                            Quantum dots (QD) are very small semiconductor particles, only several nanometres in size, so small that their optical and electronic properties differ from those of larger particles. They are a central theme in nanotechnology. Many types of quantum dot will emit light of specific frequencies if electricity or light is applied to them, and these frequencies can be precisely tuned by changing the dots' size, shape and material, giving rise to many applications.

In the language of materials science, nanoscale semiconductor materials tightly confine either electrons or electron holes. Quantum dots are also sometimes referred to as artificial atoms, a term that emphasizes that a quantum dot is a single object with bound, discrete electronic states, as is the case with naturally occurring atoms or molecules.
Quantum dots exhibit properties that are intermediate between those of bulk semiconductors and those of discrete molecules. Their optoelectronic properties change as a function of both size and shape.[3][4] Larger QDs (radius of 5–6 nm, for example) emit longer wavelengths resulting in emission colors such as orange or red. Smaller QDs (radius of 2–3 nm, for example) emit shorter wavelengths resulting in colors like blue and green, although the specific colors and sizes vary depending on the exact composition of the QD.[5]
Because of their highly tunable properties, QDs are of wide interest. Potential applications include transistorssolar cellsLEDs, diode lasers and second-harmonic generationquantum computing, and medical imaging.[6] Additionally, their small size allows for QDs to be suspended in solution which leads to possible uses in inkjet printing and spin-coating.[7] These processing techniques result in less-expensive and less time consuming methods of semiconductor fabrication.                                                                                                                                                                                                                                                       Some quantum dots pose risks to human health and the environment under certain conditions.[28][29][30] Notably, the studies on quantum dots toxicity are focused on cadmiumcontaining particles and has yet to be demonstrated in animal models after physiologically relevant dosing.[30] In vitro studies, based on cell cultures, on quantum dots (QD) toxicity suggests that their toxicity may derive from multiple factors including its physicochemical characteristics (size, shape, composition, surface functional groups, and surface charges) and environment. Assessing their potential toxicity is complex as these factors include properties such as QD size, charge, concentration, chemical composition, capping ligands, and also on their oxidative, mechanical and photolytic stability.[28]
Many studies have focused on the mechanism of QD cytotoxicity using model cell cultures. It has been demonstrated that after exposure to ultraviolet radiation or oxidized by air CdSe QDs release free cadmium ions causing cell death.[31] Group II-VI QDs also have been reported to induce the formation of reactive oxygen species after exposure to light, which in turn can damage cellular components such as proteins, lipids and DNA.[32] Some studies have also demonstrated that addition of a ZnS shell inhibit the process of reactive oxygen species in CdSe QDs. Another aspect of QD toxicity is the process of their size dependent intracellular pathways that concentrate these particles in cellular organelles that are inaccessible by metal ions, which may result in unique patterns of cytotoxicity compared to their constituent metal ions.[33] The reports of QD localization in the cell nucleus[34] present additional modes of toxicity because they may induce DNA mutation, which in turn will propagate through future generation of cells causing diseases.
Although concentration of QDs in certain organelles have been reported in in vivo studies using animal models, interestingly, no alterations in animal behavior, weight, hematological markers or organ damage has been found through either histological or biochemical analysis.[35] These finding have led scientists to believe that intracellular dose is the most important deterring factor for QD toxicity. Therefore, factors determining the QD endocytosis that determine the effective intracellular concentration, such as QD size, shape and surface chemistry determine their toxicity. Excretion of QDs through urine in animal models also have demonstrated via injecting radio-labeled ZnS capped CdSe QDs where the ligand shell was labelled with 99mTc.[36] Though multiple other studies have concluded retention of QDs in cellular levels,[30][37] exocytosis of QDs is still poorly studied in the literature.
While significant research efforts have broadened the understanding of toxicity of QDs, there are large discrepancies in the literature and questions still remains to be answered. Diversity of this class material as compared to normal chemical substances makes the assessment of their toxicity very challenging. As their toxicity may also be dynamic depending on the environmental factors such as pH level, light exposure and cell type, traditional methods of assessing toxicity of chemicals such as LD50 are not applicable for QDs. Therefore, researchers are focusing on introducing novel approaches and adapting existing methods to include this unique class of materials.[30] Furthermore, novel strategies to engineer safer QDs are still under exploration by the scientific community. A recent novelty in the field is the discovery of carbon quantum dots, a new generation of optically-active nanoparticles potentially capable of replacing semiconductor QDs, but with the advantage of much lower toxicity.


Share on Google Plus

About Unknown

0 comments:

Post a Comment

Note: only a member of this blog may post a comment.